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Abstract 
Context  Mountain meadows occur in specific geo-
morphological conditions where low-gradient topog-
raphy promotes fine sediment accumulation and high 
groundwater tables. Over 150 years of human-caused 
hydrological degradation of meadows along with fire 
suppression has resulted in decreased groundwater 
elevations and encroachment of upland vegetation, 
greatly diminishing the ecological value of meadows 
for water storage, baseflow, sediment capture, wildfire 
resistance, wildlife habitat, and carbon storage.
Objectives  We aimed to understand where and how 
frequently meadows historically occurred to reset 
the baseline condition and provide insight into their 
restoration potential. We trained machine learning 
algorithms to identify potential meadow areas with 
similar hydrogeomorphic conditions to extant mead-
ows while ignoring their unique vegetative character-
istics because we hypothesized that vegetation would 
change but geomorphology would remain.
Methods  We used a publicly available dataset of 
over 11,000 hand-digitized meadow polygons occur-
ring within a 25,300 km2, 60-watershed region in the 

Sierra Nevada, California USA to train random for-
est models to detect meadow-like hydrogeomorphic 
conditions. Predictor variables represented topo-
graphical position, flow accumulation, snowpack, 
and topographical relief at differing spatial scales. 
We assessed model performance and produced maps 
delineating high probability meadow polygons.
Results  Our findings showed that there is nearly 
three times more potential meadow habitat than cur-
rently documented. The predicted area includes a 
mixture of existing but undocumented meadows, non-
meadowlands that may have converted from mead-
ows due to lost function and forest encroachment, 
and areas with meadow-like geomorphology that 
may never have been meadow. The polygons encom-
passing predicted meadows often expanded existing 
meadows habitats into adjacent areas with continuous 
topography, but with upland vegetation and incised 
channels.
Conclusions  Using readily available data and acces-
sible statistical techniques, we demonstrated the accu-
racy of a tool to detect about three times more his-
torical meadows than currently recognized within a 
complex, mountainous landscape. This “found” area 
greatly increased the potential area that could be sub-
ject to meadow restoration with benefits for biodiver-
sity, wildfire management, carbon sequestration, and 
water storage.
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Introduction

Meadows are receiving attention from land manag-
ers because they are ecologically important habitats 
and most of them have become degraded and need 
restoration. They retain water (Loheide et  al. 2009; 
Hill and Mitchell-Bruker 2010; Ankenbauer and 
Loheide 2016), serve as carbon sinks (Norton et  al. 
2011; Reed et  al. 2021), and provide habitat for a 
high diversity of plants and animals (Allen-Diaz 
1991; Oles et  al. 2017; Ziaja et  al. 2018; Campos 
et  al. 2020). These characteristics are increasingly 
important in landscapes experiencing the effects of 
climate change such as more extensive wildfires or 
protracted droughts. Yet, meadows are rarely con-
sidered during drought and wildfire resilience plan-
ning in forested landscapes, likely because meadows 
tend to be small, isolated, and degraded. Therefore, 
meadow restoration efforts are thought to be more 
beneficial at the site level rather than for their abil-
ity to affect broader landscapes. For example, debate 
exists whether meadow restoration can substantially 
increase water storage to affect downstream baseflow 
(Hunt et al. 2018, 2020; Nash et al. 2018, 2020). The 
rationale is that meadows have too small of a capacity 
to store and release water to have a significant effect 
on hydrological processes (Nash et  al. 2018). But if 
meadows were larger and more common, they could 
become important components of efforts to manage 
climate change and other landscape-scale threats to 
forests and water supply.

Many meadows historically supported or were 
created by beavers (Castor canadensis in North 
America and C. fiber in Europe) through their 
damming of unconfined, low-gradient channels 
(McComb et  al. 1990; Pollock et  al. 2003; Polvi 
and Wohl 2012). New evidence shows that beaver-
supported wetlands in forested landscapes can sig-
nificantly increase groundwater and surface water 
storage and decrease water temperature (Dittbren-
ner et al. 2022). These changes can influence wild-
fire dynamics and provide important fire breaks in 
otherwise burned landscapes (Fairfax and Whit-
tle 2020). Since beavers were much more common 

prior to the 19th century fur rush (Naiman et  al. 
1988), restoration of beavers and beaver habitats 
would likely increase these hydrologically resist-
ant landscapes (Wohl 2021; Dittbrenner et al. 2022; 
Jordan and Fairfax 2022). Similarly, meadows 
were likely larger, wetter, and more common in the 
mountainous western United States and Canada 
prior to Euro-American settlement and subsequent 
meadow degradation (Loheide and Booth 2011; 
Celis et al. 2017; Lubetkin et al. 2017). Understand-
ing how large and common wet meadows once were 
could provide insight into their capacity for affect-
ing water storage, ecologically important summer 
baseflow, sediment capture, wildfire resistance, 
wildlife habitat, and carbon storage at both local 
and landscape scales.

Mountain meadows tend to occur in specific geo-
morphological conditions that promote fine sediment 
deposition and elevated groundwater tables (Allen-
Diaz 1991; Miller et  al. 2001; Shaw and Cooper 
2008). In California’s Sierra Nevada, they typically 
occupy low-gradient geologic benches at elevations 
from 1500 to 3000  m where they can be recharged 
annually by snowmelt (Wood 1975). Meadows sup-
port vegetation dominated by grasses, sedges, herbs, 
and shrubs such as willows and alder (Weixelman 
et al. 2011). These specialized plants have adapted to 
a high groundwater table and are sensitive to changes 
in groundwater elevations (Allen-Diaz 1991; Loheide 
and Gorelick 2007; Lowry et al. 2011).

This sensitivity of meadow plants leads to dra-
matic changes in the composition of vegetation when 
reductions in groundwater elevations occur because 
of loss of infiltration capacity, increased runoff rates, 
or channel incision (Loheide and Gorelick 2007; 
Hammersmark et  al. 2009; Loheide et  al. 2009). 
Humans simplified and confined flow paths to access 
timber and other natural resources and used mead-
ows extensively for livestock grazing resulting in 
concentrated flows and incised channels that drained 
groundwater to the elevation of the new channel bed 
(Ratliff 1985; Loheide and Gorelick 2005). With the 
addition of fire suppression, surrounding upland veg-
etation encroached onto the newly dry meadow sur-
faces and, in many places, replaced meadow vegeta-
tion (Halpern et al. 2010; Celis et al. 2017; Lubetkin 
et  al. 2017). Researchers recently quantified forest 
encroachment and closure in the Rocky Mountains 
of Canada using repeat photography and found that 
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forest coverage increased by over 35% during the 
20th century and that meadow losses were most acute 
at high elevations (Stockdale et al. 2019).

Given humanity’s propensity for shifting the base-
line of environmental change to more recent condi-
tions (Essl et  al. 2015; Fernández-Llamazares et  al. 
2015), we are likely underestimating the historical 
extent of meadows, and therefore, their importance 
for ecological restoration gains as we attempt to sus-
tain biodiversity, promote wildfire resilience, and 
mitigate the effects of climate change on our forested 
landscapes. Here, we attempt to recognize the base-
line historical extent in the Sierra Nevada by training 
machine learning algorithms to identify characteristic 
geomorphic, hydrologic, and climatic settings that 
supported stream-associated meadows. We hypoth-
esized that, while the vegetation has likely changed 
due to degradation, the underlying hydrogeomorpho-
logic signatures remain. We test if these signatures 
can be identified using machine learning techniques 
and available data (Jordan and Mitchell 2015) to 
reset the baseline for landscape and local restoration 
planning.

We anticipate this approach can be applied across 
mountain ranges, but focused our modeling efforts 
on the Sierra Nevada, California U.S.A. because the 
range supports over 20,000 extant meadows, most of 
which have been hand-digitized and are represented 
on a publicly accessible meadow polygon layer (UC 
Davis and USDA Forest Service 2017). In addi-
tion, the Sierra Nevada Range supports the freshwa-
ter needs of millions of people (Liu et al. 2021), yet 
increased warming and drought have led to reduc-
tions in snowpack and earlier snowmelt (Maina et al. 
2022). Widespread declines in dry season baseflows 
and earlier peak flows have caused concern about the 
future of the water supply (Patterson et al. 2022). The 
Sierra Nevada also supports a large wildland urban 
interface that is increasingly vulnerable to wildland 
fires fueled by dense, drought-stressed, and diseased 
forests (Van Gunst et al. 2016; Restaino et al. 2019; 
Das et  al. 2022). These important water and wild-
fire concerns are motivating land managers to iden-
tify opportunities to restore ecologically important 
meadow habitats to retain water and reduce wildfire 
stress. We anticipate the model results described 
here will support watershed restoration planning to 
improve the range’s resilience to climate change and 
resistance to wildfire.

Methods

Study area

Our study area encompasses 60 Hydrologic Unit 
Code 10 (HUC10) watersheds covering 25,300 
km2 with elevations ranging from 246 m to 4413 m 
(Fig. 1). The area extends from the Upper North Yuba 
River watershed in the north to the Brush Creek-Kern 
River watershed in the south and includes watersheds 
both west and east of the Sierran Crest. We selected 
this study area because all but five of the watersheds 
each support at least 100 hand-digitized meadows 
included in the Sierra Nevada MultiSource Meadow 
Polygons Compilation Version 2 (SNMMP, http:/​
meado​ws.​ucdav​is.​edu); the remaining five watersheds 
were included to create a contiguous geographic area 
(Online Resource 1: Model Planning).

The study area’s latitudinal and elevational range 
supports a diversity of climatic conditions and asso-
ciated forest types. The western slope of the Sierra 
Nevada receives substantial precipitation during fall 
and winter months, mostly as snow at elevations 
above 1800  m, while the eastern slope receives sig-
nificantly less precipitation (Albano et al. 2019). The 
gentler western slope is dominated by mixed conifer 
forest while the steeper eastern slope is dominated 
by dry forest and shrubland. The study area has been 
subject to hydropower development, mining, agricul-
tural land use, and urban development but consists 
primarily of public lands managed by the USDA For-
est Service and National Park Service.

Model development

We applied random forest models (Breiman 2001) 
to 60 watersheds in the Sierra Nevada to uncover the 
potential historical extent of meadows (Fig.  1). Of 
machine learning algorithms, random forest models 
have proven to effectively classify land cover char-
acteristics to improve our understanding of landform 
development across a range of scales (Liu et al. 2020; 
Tan et al. 2021; Donager et al. 2022). The predictive 
accuracy of the models relies on accurate remotely 
sensed topographic, ecological, and geophysical data 
used to train the machine learning algorithms (Houser 
et  al. 2022, Fig.  2). Accurately classified training 
data allow the models to distinguish the landforms of 

http://meadows.ucdavis.edu
http://meadows.ucdavis.edu
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interest (meadows) from complex, high relief back-
ground landscapes found within the Sierra Nevada.

Meadow training data

We used extant meadows included in the SNMMP 
dataset clipped to our study area to train our mod-
els (Fig.  2). We first subset the dataset to include 
stream-associated meadows (within 50-m of a DEM 
derived flowline) and exclude fens and discharge 
slope and depressional meadows unassociated with 

surface flow paths (Weixelman et  al. 2011), leaving 
11,127 meadow polygons covering 442.6 km2 (1.75% 
of the study area). From these polygons, we sampled 
1000 random points per watershed to create posi-
tive training data for the 60 “local” HUC10 water-
shed models. Similarly, we sampled 9000 random 
points outside of the meadow polygons per watershed 
to create negative training data. We chose a 1 to 9 
ratio in the training datasets because meadows com-
prise a small proportion of the landscape, even his-
torically, and non-meadow habitats can be extremely 

Fig. 1   The study area in 
the Sierra Nevada, Califor-
nia, USA. Red perimeter 
delineates the area of the 
“Sierra Nevada” model and 
black lines delineate the 60 
Hydrologic Unit Code 10 
watershed “local” models. 
Blue dots represent the 
extant meadow training 
data from the Sierra Nevada 
MultiSource Meadow Poly-
gons Compilation, Version 
2 (UC Davis and USDA 
Forest Service 2017)
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geomorphically diverse. We selected a maximum 
10,000 training points as a tradeoff between accu-
racy and computing power needed to run each model. 
We used the same sampling methodology to create 
a 25%-sized testing dataset with 250 meadow points 
and 2250 non-meadow points.

We also sampled from the entire study area to cre-
ate a “Sierra Nevada (SN) model” by selecting 1000 
stratified random positive and 9000 stratified random 
negative training points across every watershed in 
proportion to the relative area of meadows for posi-
tive points and watershed areas for negative points. 
Individual watersheds contributed between 8 and 28 
positive training points and 60–338 negative training 
points to the SN training dataset. We also created a 
25%-sized testing dataset to assess performance of 
the SN model. We hypothesized that local models 
with abundant training data (lots of meadows within 
the watershed) would perform better than the SN 
model for those watersheds, but that the SN model 

would perform better in watersheds with sparse or 
incomplete training data and could be better applied 
to watersheds without training data outside the study 
area. To turn these sampled points into a response 
variable for the training data, we assigned a zero to 
points sampled outside existing meadows and a one to 
points sampled with existing meadows.

Predictor variables

We identified geomorphic, hydrologic and snowpack 
variables that describe conditions known or expected 
to support stream-associated meadows (Wood 1975; 
Weixelman et al. 2011; Albano et al. 2019). Stream-
associated or “riparian” meadows usually  occur in 
low slope, depositional zones with sufficient upslope 
area to deliver both surface and subsurface flow late 
into the dry season to maintain a high groundwater 
table (Weixelman et al. 2011). We therefore selected 

Fig. 2   Random forest modeling pathway for local and Sierra 
Nevada models. On the top left is an example Hydrologic Unit 
Code 10 watershed with Sierra Nevada MultiSource Meadow 
Polygons (SNMMP) delineated. Top right is a closer image 
including SNMMP polygons and random positive (blue) and 
negative (green) training points. Rasters are extracted repre-

senting each of the predictor variables and used in the random 
forest models to develop meadow prediction rasters for the 
watershed. Grouped high probability rasters are converted to 
polygons representing model-predicted meadows (bottom left 
overview, bottom right closeup, predicted meadow polygons 
outlined in blue)
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geomorphic variables that represent topographical 
position, relief, and flow accumulation.

Hydrogeomorphic variables were derived using 
elevation data from the 3D Elevation Program 
(3DEP) digital elevation model (DEM) at 1 arc sec-
ond (~ 30 m) and 1/3 arc second resolutions (~ 10 m; 
U.S. Geological Survey 2019) (Table  1). Rasters 
were developed for relative local elevation, slope, 
topographic variability, topographic wetness, and 
distance to stream channels and included 5 × 5 rela-
tive elevation (elev_5 × 5_rel), 5 × 5 elevation stand-
ard deviation (elev_5 × 5_std_dev), 5 × 5 slope range 
(slope_5 × 5_range), 5 × 5 slope standard deviation 
(slope_5 × 5_std_dev), topographic wetness index 
(TWI) at 10 m scale (twi_10m), TWI at 100 m scale 
(twi_100m), horizontal flowline distance to stream 
channel (dd_h), vertical flowline distance to stream 
channel (dd_v) and surface flowline distance to 
stream channel (dd_s, Table 1). We used a 5 × 5 pixel 
‘moving window’ to calculate the local variation sur-
rounding the focal pixel including elevational vari-
ability, topographic roughness, and slope. Other than 
twi_100m (1 arc second DEM resampled to 100 m), 
we used 10  m pixels with 50  m × 50  m sampling 
windows. We used two scales for TWI because we 
hypothesized water accumulation patterns that occur 
in meadows may prove more relevant at the 100  m 
scale. The moving window approach has proven 

accurate for interpreting the characteristics of com-
plex landscape structure (McGarigal and Cushman 
2002; Zhu et al. 2020).

The flow distance and TWI variables were derived 
using Terrain Analysis Using Digital Elevation Mod-
els (TauDEM, Tarboton 2015), a suite of tools for 
analyzing hydrographic information from topography. 
Hydrologic sinks (low points in the elevation file that 
have no expected outflows) in the DEM were filled 
to define a drainage path from each grid cell. A flow 
accumulation raster was then derived from the filled 
DEM. A channel network raster was derived from the 
flow accumulation raster where channels had a mini-
mum threshold of 350 upslope pixels (roughly match-
ing the flowlines in the NHD dataset) to be consid-
ered a channel. TauDEM calculates the distance to a 
stream using a D-infinity model with each pixel hav-
ing multiple flow directions where the outflow from 
each pixel is partitioned between up to two downslope 
pixels (Tarboton 1997). The TWI is calculated as a 
ratio of the natural log of the accumulation area to 
slope; ln(�∕tan�) where � is the catchment area and � 
is the slope. We offset � by 0.0001 to retain any pixels 
where the slope is zero.

In addition to topographic variables, we incorpo-
rated the median snowpack on 1 April (2010–2020) 
to represent available snowpack for late season 
water delivery, which was previously found to be an 

Table 1   Predictor variables used in the random forest models. 3DEP represents 3D Elevation Program and DEM is digital elevation 
model

Variable name Description Source Value range

elev_5 × 5_rel Relative elevation calculated as the mean elevation within the 5 × 5 win-
dow surrounding the focal pixel minus the elevation of the focal pixel

1/3 Arc 3DEP (~ 10 m) − 186–142

elev_5 × 5_std_dev Elevation standard deviation denotes the variability of elevations of the 
pixels within the 5 × 5 moving window surrounding the focal pixel

0–310

slope Topographic slope at focal pixel 1/3 Arc 3DEP 0–88
slope_5 × 5_std_dev Slope standard deviation denotes the variability of slopes of pixels 

within the 5 × 5 moving window surrounding the focal pixel
1/3 Arc 3DEP 0–40

twi_10m Topographic wetness index at 10 m scale. Developed from 10 m DEM 
calculated using TauDEM

1/3 Arc 3DEP 0–9.2

twi_100m Topographic wetness index at 100 m scale. Developed from 100 m 
DEM calculated using TauDEM

1 Arc 3DEP 2.9–9.2

dd_s Distance along the flow path following the ground surface to the nearest 
channel

1/3 Arc 3DEP 0–2644

dd_h Horizontal distance traveled along the flow path 1/3 Arc 3DEP 0–2644
dd_v Vertical distance traveled along a flow path 1/3 Arc 3DEP 0–1074
snowpack Median April snowpack (2010–2020) USGS Basin Charac-

terization Model
0–10,422
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important variable for predicting meadow conditions 
(Albano et  al. 2019). Historical snowpack data was 
calculated using the USGS Basin Characterization 
Model (Flint et al. 2021).

We sampled the developed predictor raster datasets 
using the random positive and negative training data-
set points to generate the training and testing datasets.

Random forest analysis

We used random forest models to assess the relation-
ship between the predictor variables and existing 
meadows on the landscape. Random forests are an 
ensemble modeling technique that combines a large 
set of independent decision trees, each using a boot-
strap sample of the data to reduce the overall variance 
of the individual predictions while also decreasing 
the correlation between each decision tree, and thus, 
increasing its predictive accuracy (Breiman 2001; 
Liaw and Wiener 2002). Combining multiple deci-
sion trees is achieved by randomly sampling from 
the original training dataset, with sample reposition, 
to generate different subsets of the data. The subset 
trees are split according to a series of if-then rules 
maximizing the variance among resulting “nodes” 
and “leaves”. The algorithm outputs continuous val-
ues between zero and one with zero representing non-
meadow predictions, one representing meadow pre-
dictions and values between zero and one reflecting 
the model’s relative uncertainty in that prediction.

We refined the models by varying the number 
of trees (ntrees, 100–2000) and the number of vari-
ables sampled at each split (mtry, 2–6) and the itera-
tion with the lowest mean of squared residuals across 
models was used for the final models. Mean squared 
residuals generally remained static after 300 ntrees 
and most watersheds had the lowest mean square of 
residuals at mtry = 4 so these parameters were used in 
the final models.

To explore the nature of the relationship between 
the predictor variables and the response variable, 
we graphed density plots of raw data, ranked vari-
able importance within the models, and created par-
tial dependence plots of marginal effects (Friedman 
1991). Density plots were generated using a subsam-
ple of the testing data that were filtered to remove rare 
outliers by excluding the bottom and top 1% of each 
variable. This step serves a practical purpose of mak-
ing the graphs more interpretable at relevant scales. 

We calculated variable importance ranks by calculat-
ing the mean decrease in accuracy at each decision 
tree when the focal variable was randomized. Partial 
dependence plots show the marginal effect of each 
predictor variable when all other variables are held to 
their mean value.

After models were trained, we created several 
geospatial datasets from the predictions of the mod-
els across the study area. First, 10-m raster grids of 
continuous predictions (0 to 1) were constructed for 
each watershed for both the local and SN models. We 
aggregated clusters of pixels with high predictions to 
generate polygons of potential meadows. One method 
for selecting a threshold to assign predictions as 
meadow or non-meadow is to identify the threshold 
that minimizes prediction errors in the testing data-
set. We instead used a consistent, higher confidence 
threshold (0.5) for both local and SN models because 
accuracy in identifying areas that likely were histori-
cal meadows was more important to us than maximiz-
ing the identification of all potential meadow areas.

Once the two polygon datasets were created, we 
removed polygons that were less than 0.1 ha, removed 
areas that overlapped with ponds and lakes (Califor-
nia Department of Fish and Wildlife 2012), removed 
areas that overlapped with National Land Cover Data-
set classes that would never support meadow (Peren-
nial Ice/Snow and Barren Land; NLCD 2019), and 
filled holes in the polygons that were less than 400 
m2. These changes made for more accurate estimates 
of total historical meadowlands and allowed for com-
parison of this dataset with other datasets. We then 
compared the polygon datasets to existing hand-dig-
itized polygon datasets and to each other. We com-
pared overlap and unique area predictions to deter-
mine conditions where models most succeeded and 
failed.

Random forest model performance

We took a three-stage approach to model validation 
and assessment: (1) predictive accuracy of models 
with held back training data, (2) comparing model 
predictions to an alternative dataset of extant mead-
ows, and (3) examination of predicted locations 
with higher resolution LiDAR-derived digital eleva-
tion models (DEMs) to identify potential sources of 
degradation that may have caused conversion from 
meadow habitat to other habitat types.
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Predictive accuracy

We used the area under the receiver operator curve 
(AUC) to evaluate local and SN models’ fits at each 
watershed. The AUC represents the probability that 
true positives are ranked higher than true negatives in 
an aggregate measure of performance. Scores range 
from 0.0 (all predictions incorrect) to 1.0 (all predic-
tions correct) with 0.5 representing a random model 
(Fielding and Bell 1997). We used the 25% testing 
datasets to calculate the AUC for each watershed.

Comparison with alternative dataset

The Sierra National Forest (Sierra NF) maintains 
an independent meadow dataset that includes some 
meadows not found in the SNMMP dataset and has 
different shapes of meadows shared in both datasets. 
The Sierra NF dataset was derived by local land man-
agers using both remotely sensed and field discovery 
and validation and thereby provides an opportunity 
to validate model predictions at locations that were 
not used to train the model. We subset the Sierra NF 
dataset to match the spatial area used to derive the 
models and similarly limited it to meadows greater 
than 0.1 ha occurring within 50 m of flowlines. The 
resulting dataset included 6,566 meadow polygons 
compared to 3,713 meadow polygons used in the 
SNMMP training data. We compared the quantity and 
overlap of meadow polygons across the three datasets 
(predicted meadows, SNMMP meadows, and Sierra 
NF meadows) with the expectation that the predicted 
meadows would overlap with a greater proportion of 
unique Sierra NF meadows than by chance.

Comparison with imagery

We randomly selected 25 model-predicted meadow 
polygons from 4 watersheds where high resolution 
LiDAR data were available to visually determine 
the appropriateness of the designation, signs of deg-
radation, and vegetative characteristics. We used 
aerial imagery and LiDAR-derived DEMs to docu-
ment presence or absence of a flat floodplain, visibly 
incised channels, road crossings, meadow vegetation, 
and forest vegetation within the predicted meadow 
polygons.

Except for raster processing using TauDEM 
(described above), all spatial, statistical, and graphical 

analyses were conducted using R 4.0.5 (R Core Team 
2021). Random forest models were trained using the 
package randomForest (Liaw and Wiener 2002). Spa-
tial analyses were conducted using the terra and sf 
packages (Pebesma 2018: Hijmans 2022).

Results

Overview of model results

The 60 local models and one SN model predicted 
areas with similar geomorphic and climatic character-
istics to extant meadows in the Sierra Nevada. The SN 
model predicted 2.6 times greater potential meadow 
area. The local models predicted 1.2 to 7.7 times the 
area of mapped extant meadows with a mean of 2.7 
times (Online Resource 1: Model Output).

The SN model predicted 42,812 total meadow 
polygons representing 82,096 ha or 3.2% of the study 
area. Most of the predicted meadow polygons were 
small (mean = 1.9  ha, median = 0.38  ha) compared 
to the training data (mean = 6.0 ha, median = 1.2 ha). 
However, the 6507 predicted polygons larger than 
2  ha covered 64,689  ha compared to 40,124  ha for 
the 4219 SNMMP polygons larger than 2 ha. In many 
cases, the large, predicted polygons encompassed one 
or multiple SNMMP polygons (Fig. 2). The threshold 
that minimized prediction error in the testing data-
set across the 60 local models averaged 0.13 (range: 
0.06–0.25), much lower than the high-confidence 
threshold we selected.

Importance of predictor variables

The most important variables for predicting mead-
ows included topographic wetness index at the 100 m 
scale (twi_100m), snowpack, standard deviation of 
local elevations in a 5-pixel x 5-pixel moving win-
dow (elev_5 × 5_std_dev), and the vertical distance to 
a stream channel along the flow line (dd_v) (Fig. 3). 
Meadows tended to occur in areas with relatively high 
TWI, low local relief, and minimal change in verti-
cal flow distance to the stream channel compared to 
non-meadow areas (Fig. 3). Snowpack was important 
overall but varied across watersheds: it had low pre-
dictive power in low elevation watersheds but high 
predictive power in watersheds with high elevational 
relief where meadows occurred primarily in the upper 
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watershed. Partial dependence plots show similar pat-
terns of variable relationships (Supplemental Materi-
als 2).

Validation of model output

Predictive accuracy

For the watershed models, 59 of 60 local models 
had AUC values above 0.89 (one watershed scored 
0.67) and the SN model scored above 0.80 when 
assessed using testing data for the individual water-
sheds (Online Resource 1: Model Validation). When 
the SN model was assessed using the composite test-
ing data from all watersheds, it had an AUC value of 
0.90. Local models outperformed the SN model at 
every watershed based on AUC rankings, although, 

42 of 60 watersheds had SN AUC values within 0.05 
of the local model’s AUC. The local and SN model 
results varied depending on the quantity and accuracy 
of positive training data for a particular watershed. In 
general, the SN model predictions were similar to the 
local models except in watersheds where meadows 
occurred in relatively unique hydrogeomorphic con-
ditions (Fig. 4).

Comparison with Sierra NF dataset

The SN model predicted 7,025 meadow poly-
gons with a total area of 14,254 ha or 2.8% of the 
509,168  ha Sierra NF study area. For compari-
son the SNMMP training dataset included 3,713 
meadow polygons with a total area of 7,415  ha or 
1.5% of the Sierra NF study area and the Sierra NF 

Fig. 3   Relationships between predictor variables and exist-
ing meadows and the importance of predictor variables in 
random forest modeling. A Relative density of predictor vari-
able values for positive meadow training data (blue lines) and 
non-meadow training data (green lines). B Scaled model vari-
able importance from the local (small black dots) and ”Sierra 

Nevada” (blue triangle) random forest models predicting 
potential meadow. Higher values indicate increased variable 
importance. Yellow triangle indicates median variable impor-
tance value for 60 local models. Variable abbreviations and 
definitions are outlined in Table 1.
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dataset included 6,566 polygons with a total area of 
8,007  ha (1.6%). Of the 1,878  ha (23%) of Sierra 
NF meadows that do not overlap the SNMMP data-
set (i.e., meadows not used to train the model), the 
SN model successfully predicted 524  ha (28%). 
This represents a 10-fold increase in predictions 
covering existing testing meadows compared to por-
tions of the landscape that do not have documented 
meadows (28% vs. 2.8%). Considering meadow 
counts instead of areas, of the 5627 (37%) of Sierra 

NF polygons that do not touch SNMMP polygons, 
the model identified 1846 (33%).

Comparison with LiDAR‑derived DEMs and imagery

Review of a random selection of predicted meadows 
that overlapped with existing meadow areas using 
DEMs revealed that the models consistently extended 
meadow areas to encompass contiguous flat flood-
plains (Fig.  4). Review of aerial imagery showed 

Fig. 4   Local (yellow outlines) and ”Sierra Nevada” (SN, blue 
outlines) random forest model-predicted polygons compared to 
SNMMP meadow polygons (red outlines) for portions of two 
watersheds to highlight outliers in model performance. In the 
first case (A, LiDAR-derived Digital Elevation Model (DEM) 
& B, aerial imagery), the Upper Middle Fork American River 
Watershed (HUC10: 1802012803) had relatively little posi-
tive training data and the data represented a narrow range of 
meadow characteristics. The local model polygons (yellow) 
predicted a 7.4×  increase in meadow area but only of the 
meadow type in the training data, while the SN model (blue) 
identified an 8.5× increase in area primarily because it added 

several large areas of potential meadow along the lower eleva-
tion, large, flat floodplain where no local positive training data 
existed. In the second example (C, DEM & D, aerial imagery) 
both models predicted less area than included in the SNMMP 
training data (local: 0.9×, SN: 0.8×). Many of the training 
meadows in the Middle Fork San Joaquin River Watershed 
(HUC10: 1804000604) occurred along steep hillslopes with 
minimal flow paths so had hydrogeomorphic characteristics 
contrary to much of the rest of the training data. In this case, 
the local model did a better job of identifying these meadows 
than the SN model
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these areas often dominated by vegetation indiscern-
ible from the surrounding upland vegetation (Fig. 4). 
A close review of aerial imagery at predicted poly-
gons that do not overlap with existing meadow poly-
gons showed evidence of meadow vegetation (35 of 
67), although usually within a mosaic of upland for-
est. About 90% of both existing and predicted mead-
ows showed evidence of incised channels. A review 
of the largest predicted meadow polygons revealed a 
few that were likely historically meadows and wet-
lands but had been dramatically altered for human 
uses such as drainage diversions for drinking water 
(Owens Valley) and airports. However, most of the 
large, predicted meadow polygons showed no vis-
ible human infrastructure to preclude restoration, but 
clearly had incised channels and upland vegetation 
(e.g., Gerle Creek shown in Fig. 2).

Discussion

We trained machine learning models to identify 
high probability potential meadow habitats for 60 
watersheds in the Sierra Nevada, California. The 
local watershed-scale models identified one to eight 
times more potential meadow area than is currently 
mapped, and the ”Sierra Nevada” (SN) model that 
encompasses all 60 HUC10 watersheds identified 
nearly 3 times more potential meadow area than is 
currently identified. Additionally, the SN model out-
put located 42,812 new high probability potential 
meadow areas > 0.1 ha in size across the study area. 
Expanding the number and size of meadows substan-
tively resets their ecological baseline importance by 
countering shifting baseline syndrome and resetting 
the baseline to historical conditions. These model-
predicted meadows represent areas with similar 
hydrogeomorphic characteristics of existing meadows 
and could therefore be considered during watershed 
restoration planning as areas for increasing ground-
water storage and floodplain connectivity. The out-
put maps are available for use in single meadow or 
watershed restoration planning. In a related paper, we 
conceptually showed how the model output can be 
incorporated into watershed restoration planning to 
help manage wildfire, increase base flow, and capture 
post-wildfire sediment pulses (Pope and Cummings 
2023). By restoring hydrological processes in these 

low-gradient meadowlands, we can start to recover a 
catchment’s natural storage potential.

Many of the model-predicted meadows could be 
considered “lost meadows” because they histori-
cally may have been meadows that later transitioned 
to forest as natural processes and human distur-
bances caused forests to enclose meadows and other 
open spaces (Stockdale et  al. 2019). Indeed, in our 
analysis of imagery in a subsample of the identified 
potential meadows, we found that most of the model-
predicted meadows support vegetation more similar 
to the surrounding upland habitat-types than mead-
ows. The LiDAR-derived DEMs consistently showed 
incised channels that drain these habitats, which 
would allow for encroachment of upland vegetation 
once the water table had been lowered (Loheide and 
Gorelick 2007). It is important to note that during a 
stratigraphic assessment of southern Sierra meadows, 
Wood (1975) found no evidence of distinct channels 
within the meadows until the arrival of Euro Ameri-
can people. He also found that meadow habitats had 
been stable for about 2,000 years prior to rapid degra-
dation presumably associated with extraction of natu-
ral resources and livestock grazing that started around 
the 1850s (Wood 1975).

We focused on stream-associated meadows that are 
supported by surface flow and groundwater. These 
“riparian meadows” tend to occur lower in the water-
shed than meadows only supported by snowmelt 
(Weixelman et al. 2011) and, therefore, may be more 
likely to benefit from meadow restoration activities. 
Restoring these groundwater-connected habitat-types 
could increase carbon storage (Norton et  al. 2011; 
Reed et al. 2021, 2022), increase resistance to wildfire 
(Fairfax and Whittle 2020), and sustain ecologically 
important dry season baseflows that support down-
stream aquatic organisms and human uses (Loheide 
et al. 2009; Snyder et al. 2015; Johnson et al. 2017). 
With the current urgency to reduce greenhouse gas 
emissions (IPCC 2022) and mitigate the effects of cli-
mate change on freshwater resources (Parmesan et al. 
2022), maximizing low risk and low-cost restorations 
to regain lost meadow and floodplain could provide a 
myriad of benefits when included in watershed resto-
ration and forest resilience planning (Jordan and Fair-
fax 2022; Pope and Cummings 2023).

However, some of the model-predicted “lost mead-
ows” will probably not return to actual meadows even 
if restoration is implemented given that meadows are 
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among the most vulnerable ecosystems to climate 
change (Hauptfeld et  al. 2014). Historical meadows 
that are highly sensitive to changes in snowpack are 
likely to continue converting to upland vegetation due 
to continued decreases in spring snowpack and snow 
melt (Drexler et al. 2013).

Our ability to visualize the historical baseline of 
the extent of meadows within forested landscapes and 
the potential for restoration gains has been increased 
dramatically by advances in remote sensing and 
machine learning. We selected random forest models 
for the analysis because they have been found to be 
powerful machine learning algorithms for geomor-
phic mapping and they have great capacity for data 
explanation (Houser et al. 2018; Siqueira et al. 2021). 
Random forest models can work with relatively few 
predictors, making the relationships and importance 
of the predictors more easily interpretable (Sique-
ira et  al. 2021). This is important for understanding 
whether the associations are meaningful and could 
potentially be extended beyond the training area 
(Houser et al. 2022). Of the predictor variables used 
in the SN model, topographic wetness index at the 
100 m scale (twi_100m), standard deviation of local 
elevations in a 5 pixel × 5 pixel moving window 
(elev_5 × 5_std_dev), the vertical distance to a stream 
channel along the flow line (dd_v), and snowpack had 
the highest relative importance. We interpret these 
predictors as highly meaningful and generalizable 
for finding locations of meadows. Basically, the four 
most important variables define areas with relatively 
smooth and low-slope surfaces with unimpeded flow 
paths where water accumulates from precipitation 
and snowmelt. We used two scales of TWI and found 
the 100  m scale more informative than the 10  m 
scale. We assume that the 100  m scale is more rel-
evant for the hydrogeomorphic processes (e.g., sedi-
ment accumulation, high groundwater table) to result 
in meadow formation.

Overall, both local and SN models performed 
extremely well based on accepted machine learn-
ing validation metrics. We trained models at both 
scales because we wanted to maximize accuracy 
and applicability. We found local models most effec-
tive in watersheds with plentiful, accurate training 
data and where the geomorphic conditions of mead-
ows are unique compared to surrounding watersheds 
(Fig.  4). The SN model performed well across the 
study area, including in watersheds with little training 

data, suggesting it could be generalizable to the entire 
Sierra Nevada and easily adapted to other ranges that 
support similar stream-associated meadows and have 
them mapped to use as training data.

In a few sub-watersheds, our selection of a high 
confidence threshold resulted in less meadow habi-
tat predicted than was delineated in the SNMMP 
database. This counterintuitive result seems to have 
occurred in watersheds with poorly or uniquely delin-
eated existing meadows. The negative training data-
set was randomly selected from areas not defined as 
a meadow in the SNMMP dataset, so if a relatively 
large area of existing meadows was not included in 
the database, it resulted in a higher proportion of the 
negative training data resembling the positive train-
ing data, and ultimately, less predicted meadowlands. 
This occurred in the Middle Fork San Joaquin River 
Watershed (Fig. 4). In this case, the local model out-
performed the SN model because the SNMMP data-
set included unusual stream-associated meadows on 
steeply sloped hillsides. The local model received 
more positive training data matching these condi-
tions and so did a better job of identifying the unique 
meadow areas. In addition, underpredicting existing 
meadows as seen in this watershed and in the vali-
dation using an alternative dataset may indicate the 
threshold of > 0.5 is conservative and the estimates of 
historical meadow presented here are likely conserva-
tive too. Regardless, when meadows were not clearly 
geomorphically distinct from the surrounding land-
scape matrix, it was more difficult for the models to 
detect potential meadow with high confidence, result-
ing in less area predicted and highlighting the impor-
tance of consistent and accurate training data.

Conclusions

The models developed in this study help identify pos-
sible meadows that once occurred across the Sierra 
Nevada. These predictions nearly tripled the amount 
of area that was previously mapped as meadow. In 
some instances, the predictions made by these mod-
els expand existing known meadows, while in others 
new potential meadows are identified. These results 
have strong implications for meadow restoration, par-
ticularly in demonstrating the large, previously unrec-
ognized area for possible meadow restoration across 
the Sierra Nevada. More broadly, meadow restoration 
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can help to mitigate the consequences of climate 
change by modulating stream flows and supplement-
ing baseflow, storing carbon, increasing soil moisture 
resulting in reduced wildfire behavior, and serving as 
important habitats for a diverse range of plants and 
wildlife.
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